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Abstract 

A new phenomenon in nonlinear dispersive systems, including a Bose-Einstein Condensate 
(BEC), has been described. It is based upon a resonance between an externally induced soliton 
and “eigen-solitons” of the homogeneous cubic Schrodinger equation. There have been shown 
that a moving source of positive /negative potential induces bright /dark solitons in an attractive 
/ repulsive Bose condensate. 

PACS numbers: 0.5.45.Yv, 03.75.Kk 

This paper is devoted to the analysis of special properties of the cubic 

Schrodinger equation (CSE) [ 13 driven by a time-dependent external potential. This 

equation as an approximation for modulated beams in nonlinear optics as well as for the 

model of superfluids, and in particular, for the Bose-Einstein condensate, has general 

significance for time dependent dispersive waves. The objective of this work is to 

investigate interactions between externally induced solitons (via a time-dependent 

external potential) and “eigen-solitons” characterizing dispersive waves under a time 

independent potential. It has been expected that the soliton-shaped external energy 

pumped into the system will induce and intensify “eigen-solitons” in the same way in 

which the classical resonance works. 

Let us start with the mathematical aspect of the problem. A standard form of a 

normalized one-dimensional cubic Schrodinger equation driven by a time-dependent 

potential can be presented as 

(1) 
2 iu, + u, + vJuJ u = vu, 

where u(x,t) is the complex state variable, V(x, t )  is the external potential generated by 

a moving source, and v is the coupling constant. Looking for a resonance, we will 

assume that the potential Vhas the same form as the expected solution: 

v ( x , t )  = a I U ( x , t )  I, (2) 
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where A is a constant. We will look for the asymptotic solution of this equation (1) at 

t + 03 in the form of a localized traveling wave 

(3) = &z-st) v(Q 

where r , s  are constants to be determined, and v is a real function of the argument 5 .  
The coordinate 5 is chosen in the form 5 = x - U t ,  where U is the speed of the moving 

potential. Substituting the expression (3) in the Schrodinger equation (1) and choosing 

r = U / 2 and s = U 2  / 4 we obtain an ordinary differential equation for the function 

v(<> : 

+ vu3 - av2 = o (4) 

After integration, the left-hand side of the equation (4) is reduced to the following 

2 v 4 2  3 
+--2) --av = o  
2 3 

Even prior to integration of equation (9, one concludes that the solution has extremum at 

u = 41  / (3v). Therefore for positive u = 4A / (3v) the signs of the parameters A and v 

must be the same. Moreover, ut< = -16A3 / (27v2> at u5 = 0. Hence, this solution has 

maximum if A > 0 and minimum if A < 0. 

The formal solution of the equation (5) 

6 / A  
2 ) =  c2 + 9 v /  (2a2) 

describes a moving solitary wave induced by the external 

There are several interesting 

soliton as well as its height 

(6) 

potential. 

properties of the solution. First, the speed U of the 

4 a  h=--  
3 v  (7) 

are uniquely determined by the moving potential and in particular, by the parameter A .  

For A > 0, the solution (6) describes bright soliton, with maximum at the extremum 

point. Fora  < 0 it describes gray or dark solitons. Second, as follows from equation (7), 

the resonant growth of the bright soliton is restricted since this solution is spread over the 

whole space. Therefore, the bright soliton is bounded as in a damped classical resonance. 

However, in contradistinction to the classical resonance, where the external force must 

possess certain frequencies, here any speed of the external potential will be “picked-up’’ 
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by the system. It should be noticed that the shape of the induced soliton is different from 

those of the known “free” bright soliton, which is given by the equation 

u = (a / v)sech(<&), where a = r2 - s is the parameter of the model [ 13. Third, the 

dark soliton has the form 

The solution (8) has the minimum at < = 0, while u +- 00 at 5 = +9v / Zk2. As follows 

from equation (8), the dark soliton is not spread over the whole space, and therefore, an 

external energy is pumped into a localizing space during an infinite period of time. As a 

result, at t +- 00, the state variable u becomes unbounded. In this case the underlying 

model should be reformulated for u exceeding a certain original value. 

Thus, any moving potential whose shape can be approximated by the function (6), 

induces a forced soliton moving with a constant velocity U ,  while the height of this 

soliton is determined by the equation (7). The amplitude of this soliton can be 

significantly amplified by an appropriate choice of the control parameter 1. 
We will demonstrate the soliton resonance in a Bose condensate. BEC of weakly 

interacting atoms is described by Gross-Pitaevski equation for the order parameter 

w(x, t )  : 

J 

where g is the coupling constant, m is the mass of the atom of the condensate and V is 

the external potential. The coupling constant in (9) is given by g = 47cti2 a /m,  where a is 

the s-wave scattering length. We will select the external potential in the form V = mQ, 

where @ is the gravitational potential and normalization conditions for y as 

Id7  I y(?) f= N ,  where N is the number of atoms. In a one-dimensional case this 

equation can be written as 

After rescaling the variables f = t / A and 2 = & / A the equation (10) becomes 

identical to the equation (1): 
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where we put mQ, = il I $ I . The induced soliton density following from equation (1 1) 

is: 

Following the results, described above, we can identify two types of solitons in BEC. 

Assuming il> 0, g < 0 we obtain a bright soliton of the compression induced by a 

moving source of a positive potential in attractive BEC. One should recall, that in the 

case of time independent potential an attractive BEC can have only bright solitons, which 

are urislable with respect to disturbances in other dimensions [l]. Obviously, for the case 

of an induced soliton, the problem of instability becomes irrelevant if the external 

potential is uniformly distributed over the width of the condensate. 

When A. < 0, g > 0,  we will obtain a soliton of depression induced by a moving 

source of a negative potential in repulsive BEC. 

As an example we consider an attractive BEC interacting with a linear source, or 

a long string, of a constant density with the mass anomaly at point x :  p ( x )  = po - MS(x).  

The string, moving with speed U ,  creates gravitational field with potential 

where G is the Newtonian gravitational constant and 1 is the shortest distance between 

the string and the origin of BEC. Using equations (1 2) and (1 3), we obtain the value of A 

under the condition that the equation A& = mQ is satisfied. The equation for A will be 

Therefore, the bright soliton induced by a mass M moving near the one-dimensional 

BEC with the speed U on the distance is 

As follows from this equation, the soliton density distribution depends on the masses m 

of atoms in the condensate and on the coupling constant g .  We can plot the curves (12) 
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and (13) using the relation between the density distribution of soliton and the scaled 

gravitational potential (m / A) Q,. The moving mass anomaly M = l p g  at distance 

I = 1 meter, given by the solid line in Fig. 1, creates soliton profile shown by diamond 

line. The profile is obtained for the condensate of Li atoms with the negative effective 

scattering length a = -1.45nm. The maximal density of the induced soliton is 

n =: lo2 ( i /cm3) .  
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The soliton profile & in BEC of Li atoms (diamond line) is compared to the 

scaled gravitational potential (m / A)@ created by mass anomaly M=IO-7 kg (solid line) 

Fig. 1 

moving with constant velocity at the distance 1 = 1 cm. 

As follows from Fig.1 the coefficient A expressed by the equation (14) provides the 

equality (2) at the top of soliton and at about 80% of its height. In principle, we could 

find such a distribution of mass anomaly (or to apply an electromagnetic external 

potential) that would enforce equation (2) exactly. However, we have chosen to 

demonstrate how a “natural” external potential in the form of a moving point-mass 

anomaly induces in bright solitons in BEC. 
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Hence, for a given attractive BEC there has been discovered an optimal moving 

point-mass anomaly as well as its optimal distance from the BEC such that this motion 

induces a bright soliton moving with the same speed as the point mass anomaly. 

It should be noticed that in this paper we are dealing with asymptotic solutions (1) 

and (10). Obviously the transitional dynamics of the formation of induced solitons cannot 

be obtained without a solution of these equations subject to appropriate initial and 

boundary conditions. 

Thus, there has been described a new fundamental phenomenon in nonlinear 

dispersive systems governed by the cubic Schrodinger equation. It is based upon a 

resonance between an externally induced soliton and “eigen-soliton” of the homogeneous 

cubic Schrodinger equation. The analytical form of the forced soliton and its relation to 

the moving external potential have been established. Special attention was paid to the 

Bose-Einstein condensate as a nonlinear dispersive system. It has been demonstrated that 

there are two types of solitons, which can be induced in BEC by external soliton-shaped 

potential: bright solitons representing solitary waves of compression, and dark solitions 

representing solitary waves of depression. It has been noticed that the induced solitons 

are different from the known free solitons not only by the level of their intensity but also 

by their shapes. The relationships between the type of the soliton, the type of BEC and 

the sign of the moving external potential have been established. J 
The research described in this paper was performed lj& the Jet Propulsion 

Laboratory, California Institute of Technology, and was sponsored by DARPA and 

National Reconnaissance Office through an agreement with the National Aeronautics and 

Space Administration. 
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